Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular Control of Redox Homoeostasis in Specifying the Cell Identity of Tapetal and Microsporocyte Cells in Rice.

Identifieur interne : 000147 ( Main/Exploration ); précédent : 000146; suivant : 000148

Molecular Control of Redox Homoeostasis in Specifying the Cell Identity of Tapetal and Microsporocyte Cells in Rice.

Auteurs : Jing Yu [République populaire de Chine] ; Dabing Zhang [République populaire de Chine, Australie]

Source :

RBID : pubmed:31214893

Abstract

In flowering plants, male reproduction occurs within the male organ anther with a series of complex biological events including de novo specification of germinal cells and somatic cells, male meiosis, and pollen development and maturation. Particularly, unlike other tissue, anther lacks a meristem, therefore, both germinal and somatic cell types are derived from floral stem cells within anther lobes. Here, we review the molecular mechanism specifying the identity of somatic cells and reproductive microsporocytes by redox homoeostasis during rice anther development. Factors such as glutaredoxins (GRXs), TGA transcription factors, receptor-like protein kinase signaling pathway, and glutamyl-tRNA synthetase maintaining the redox status are discussed. We also conceive the conserved and divergent aspect of cell identity specification of anther cells in plants via changing redox status.

DOI: 10.1186/s12284-019-0300-3
PubMed: 31214893
PubMed Central: PMC6582093


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular Control of Redox Homoeostasis in Specifying the Cell Identity of Tapetal and Microsporocyte Cells in Rice.</title>
<author>
<name sortKey="Yu, Jing" sort="Yu, Jing" uniqKey="Yu J" first="Jing" last="Yu">Jing Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Dabing" sort="Zhang, Dabing" uniqKey="Zhang D" first="Dabing" last="Zhang">Dabing Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China. zhangdb@sjtu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia. zhangdb@sjtu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064</wicri:regionArea>
<wicri:noRegion>5064</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31214893</idno>
<idno type="pmid">31214893</idno>
<idno type="doi">10.1186/s12284-019-0300-3</idno>
<idno type="pmc">PMC6582093</idno>
<idno type="wicri:Area/Main/Corpus">000137</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000137</idno>
<idno type="wicri:Area/Main/Curation">000137</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000137</idno>
<idno type="wicri:Area/Main/Exploration">000137</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular Control of Redox Homoeostasis in Specifying the Cell Identity of Tapetal and Microsporocyte Cells in Rice.</title>
<author>
<name sortKey="Yu, Jing" sort="Yu, Jing" uniqKey="Yu J" first="Jing" last="Yu">Jing Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Dabing" sort="Zhang, Dabing" uniqKey="Zhang D" first="Dabing" last="Zhang">Dabing Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China. zhangdb@sjtu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia. zhangdb@sjtu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064</wicri:regionArea>
<wicri:noRegion>5064</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Rice (New York, N.Y.)</title>
<idno type="ISSN">1939-8425</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In flowering plants, male reproduction occurs within the male organ anther with a series of complex biological events including de novo specification of germinal cells and somatic cells, male meiosis, and pollen development and maturation. Particularly, unlike other tissue, anther lacks a meristem, therefore, both germinal and somatic cell types are derived from floral stem cells within anther lobes. Here, we review the molecular mechanism specifying the identity of somatic cells and reproductive microsporocytes by redox homoeostasis during rice anther development. Factors such as glutaredoxins (GRXs), TGA transcription factors, receptor-like protein kinase signaling pathway, and glutamyl-tRNA synthetase maintaining the redox status are discussed. We also conceive the conserved and divergent aspect of cell identity specification of anther cells in plants via changing redox status.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31214893</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">1939-8425</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>12</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jun</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Rice (New York, N.Y.)</Title>
<ISOAbbreviation>Rice (N Y)</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular Control of Redox Homoeostasis in Specifying the Cell Identity of Tapetal and Microsporocyte Cells in Rice.</ArticleTitle>
<Pagination>
<MedlinePgn>42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12284-019-0300-3</ELocationID>
<Abstract>
<AbstractText>In flowering plants, male reproduction occurs within the male organ anther with a series of complex biological events including de novo specification of germinal cells and somatic cells, male meiosis, and pollen development and maturation. Particularly, unlike other tissue, anther lacks a meristem, therefore, both germinal and somatic cell types are derived from floral stem cells within anther lobes. Here, we review the molecular mechanism specifying the identity of somatic cells and reproductive microsporocytes by redox homoeostasis during rice anther development. Factors such as glutaredoxins (GRXs), TGA transcription factors, receptor-like protein kinase signaling pathway, and glutamyl-tRNA synthetase maintaining the redox status are discussed. We also conceive the conserved and divergent aspect of cell identity specification of anther cells in plants via changing redox status.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Dabing</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-1764-2929</Identifier>
<AffiliationInfo>
<Affiliation>Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China. zhangdb@sjtu.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia. zhangdb@sjtu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CX(18)1001</GrantID>
<Agency>Jiangsu Agricultural Science and Technology Innovation Fund</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Rice (N Y)</MedlineTA>
<NlmUniqueID>101503136</NlmUniqueID>
<ISSNLinking>1939-8425</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Anther cell specification</Keyword>
<Keyword MajorTopicYN="N">Redox homoeostasis</Keyword>
<Keyword MajorTopicYN="N">Rice</Keyword>
<Keyword MajorTopicYN="N">Tapetal PCD</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31214893</ArticleId>
<ArticleId IdType="doi">10.1186/s12284-019-0300-3</ArticleId>
<ArticleId IdType="pii">10.1186/s12284-019-0300-3</ArticleId>
<ArticleId IdType="pmc">PMC6582093</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Oct;153(2):933-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10511568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Jul;8(7):335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12878018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1728-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(11):1266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Mar;54(5):755-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Oct;9(10):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Jan 3;168(1):17-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15631987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(5):866-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;79(3):305-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 Aug;98(2):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2006 Nov;28(11):1091-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):2999-3014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17138695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Apr 4;26(7):1749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17347651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(5):790-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18036205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cell Mol Biol. 2008;270:87-144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19081535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):429-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jan;22(1):91-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 May;51(5):795-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20304786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1492-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:437-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21275644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Feb;23(2):515-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21297036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2011 Sep 20;38(9):379-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21930097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Feb;24(2):577-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22319054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jul 20;337(6092):345-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22822150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Oct;196(2):402-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22913653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:1445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23385589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Sep;6(5):1715-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23519457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Feb;17:49-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24507494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Apr 22;26(4):1512-1524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24755456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Apr 29;26(4):1544-1556</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24781116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 May 7;26(5):2007-2023</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24808050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Jun 3;26(6):2486-2504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24894043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jan;27(1):104-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25616871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jan;27(1):121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25616873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Sep;83(6):976-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26216374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Nov;20(11):741-753</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Mar;170(3):1611-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26697896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2016;11(3):e1136764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26906115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):2085-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Jan;176(1):819-835</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29158333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Reprod. 2018 Mar;31(1):77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29508076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Jun;177(2):728-744</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29720556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1996 Apr;122(4):1261-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8620853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Mar;142(3):1009-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8849906</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yu, Jing" sort="Yu, Jing" uniqKey="Yu J" first="Jing" last="Yu">Jing Yu</name>
</noRegion>
<name sortKey="Zhang, Dabing" sort="Zhang, Dabing" uniqKey="Zhang D" first="Dabing" last="Zhang">Dabing Zhang</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Zhang, Dabing" sort="Zhang, Dabing" uniqKey="Zhang D" first="Dabing" last="Zhang">Dabing Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000147 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000147 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31214893
   |texte=   Molecular Control of Redox Homoeostasis in Specifying the Cell Identity of Tapetal and Microsporocyte Cells in Rice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31214893" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020